Use of physical restraints in adult ICU patients to prevent patient-initiated device removal: a systematic review

Utilizzo della contenzione fisica nei pazienti adulti critici per prevenire l'autorimozione dei presidi: revisione sistematica della letteratura

Relazione di fine Master di
Erika Bassi e Marilena Ceresola

Bologna – 19 Ottobre 2011
Abstract

Review Objective The aim is to present the best available evidence on the use of physical restraint to prevent patient-initiated device removal in adult ICUs patients.

Background The major reason for the use of physical restraints in ICUs is to protect patients from self-removal of therapeutic devices in light of the current sedation trends. Premature discontinuation of technologically complex therapies may result in serious harm. Even if physical restraint is often seen as a "simple" solution, according to many authors the benefits are uncertain as it can heighten agitation and may have devastating physical and psychological effects on patients.

Search Strategy A literature search was performed using the following databases MEDLINE, CINAHL, EMBASE, COCHRANE Library. Also unpublished studies were searched. No restrictions were placed on date of publications, no language limits.

Methods A critical appraisal of the selected studies was conducted using tool from JBI-MAStARI software. A data extraction and synthesis will follow.

Main results (before data extraction) A total of 6 observational studies were included in the present review. Although the area of interest was "patient-initiated device removal" in adult restricted ICU patients with all types of devices, the included publications regards only the unplanned removal of endotracheal tube.

Final considerations (before data extraction) Only the primary outcome had been investigated in the six included studies: they all collected the frequency of unplanned extubation in restrained/not restrained patients, but only few of them considered also the complications related to unplanned extubation and none of them the complication related to physical restraints use.

Key words: physical restraints, device removal, unplanned extubation, self-extubation, treatment interference, intensive care unit, critical care.
Review title

Use of physical restraints in adult ICU patients to prevent patient-initiated device removal: a systematic review.

Reviewers

Erika Bassi RN¹
Marilena Ceresola RN²

¹ Centro Studi EBN - Bologna (Italy), erika.bassi@gmail.com
² Centro Studi EBN - Bologna (Italy), d.boretti@alice.it

1. Review question/objective

The aim of this systematic review is to present the best available evidence on the use of physical restraint to prevent patient-initiated device removal in adult ICUs patients.

The review question: what is the effectiveness of physical restraints on prevention of patient-initiated device removal in adult ICU patients?

2. Background

Restraint in medicine is the use of physical or chemical means to control unwanted behavior, such as agitation, self-extubation, unwilling removal of invasive devices or fall⁵.

Physical restraint has been defined as "any manual method or physical or mechanical de vice, material or equipment attached or adjacent to a patient’s body, that he or she cannot easily remove, that restricts freedom of movement or normal access to one’s body"².

The major reason for the use of physical restraints in intensive care units (ICUs)³,⁴ is to protect patients from self-removal of therapeutic devices in light of the current sedation trends including daily wakening protocols and a shift in clinical patient management from deeper to lighter sedation¹.

Premature discontinuation of technologically complex therapies (endotracheal tube, intra aortic balloon pump, lung drainage, central venous catheter, arterial catheter, indwelling bladder catheter, feeding tube, etc) may result in serious harm, injury or death³,⁶; patient removal of devices other than endotracheal tubes (eg intra aortic balloon pumps) may have similar levels of life-threatening harm; on the other hand, devices as peripheral intravenous catheters may be more likely to cause minor to no harm in patients but can consume significant staff time or costly resources³,⁶.

Although the maintenance of therapeutic devices is a primary reason for the use of physical restraints in ICUs, little is known regarding the rate of patient-initiated device removal other than endotracheal tubes. According to the literature since the 1970s a number of investigators have focused on patient self-extubation from mechanical ventilation³. In the past decade, studies from the United States⁶,⁷,⁸ Europe⁹,¹⁰,¹¹,¹²,¹³, and Asia¹⁴,¹⁵ have reported incidence rate of self-extubation ranging from 0.3% to 14.3% and prevalence rate of 2.0 to 25.6/1000 ventilator-days³; one third or more of the self-extubation events occurred despite use of wrist restraints³,⁷,¹⁰,¹³ leaving the effectiveness of physical restraints an unresolved issue.
Even if physical restraint is often seen as a “simple” solution to the problem of the treatment interference in critically ill patients, according to many authors, the benefits are uncertain, as it can heighten agitation and may have devastating physical and psychological effects on the patients.

The use of physical restraints seems to vary within and between countries. In Norwegian ICUs interventions to prevent treatment interference have traditionally not included the use of physical restraints; rather, a norm has prevailed for nurses to remain within a distance that allows direct observation and "eye contact" with intubated patients, both to avoid isolation and to be alert for sudden behavioral changes. Devices commercially available in the United States, such as soft wrist restraints and vest jackets, are not marketed to the critical care community in Norway.

In the British Association of Critical Care Nurses position statement on the use of restraint in adult critical care unit the authors suggested many alternative non-restraint methods to manage agitated patient and to prevent the device removal: minimizing noise and sleep deprivation, promote patient comfort, assess and monitor pain levels, reduce isolation as far as possible and involve the family in the surveillance of the patient.

A systematic review by Evans et al entitled "Physical Restraint in Acute and residential Care" was published in 2002 in The Joanna Briggs Institute Library. The objective of this review was to present the best available information on the use of physical restraint in acute care hospitals and in residential care facilities; the authors investigated a number of areas and tried to answer many questions:

- The use of restraints (What proportion of patients and residents are physically restrained? What is the duration of restraint for patients and residents? What physical restraint devices are used in the acute and residential care setting?)
- Characteristics of restraints (What specific patient or resident characteristics increase the likelihood of the initiation of physical restraint?)
- Reasons for restraint (Why do health care workers restrain people?)
- Injury (What proportion of patients and residents suffer restraint-related injury? What injuries do physical restraint devices cause? What injuries are caused by specific restraint devices?)
- Experience (What is the experience of being restrained in an acute or residential care facility? What is the experience of having a relative physically restrained in an acute or residential care facility?)
- Restraint minimization programs (Do restraint minimization programs reduce the use of physical restraint devices in the acute and residential care setting? Is there an increase in adverse events following restraint minimization?)
- Restraint alternatives

The investigation in the acute care settings included also -but not exclusively- studies carried on in ICUs; the results about the reasons for initiating physical restraint in the acute care hospitals highlight that "treatment-oriented reasons" (to protect patients from preventing devices removal) were cited in 85% of the reports found. The most common cited reasons for using physical restraint devices in both the acute and residential care setting are factors associated with the care of the patient: safety, agitation, behavior control, wandering and support were the five sub-themes identified within the "patient-oriented reasons".

The review showed that there is little information related to the prevalence of restraint-related injury in either the hospital or residential care settings. Death is the most commonly reported adverse event directly related to the use of physical restraints that has been reported in the literature retrieved by
Evans et al. However, the authors noted that because of the seriousness of this event, it is far more likely to be identified during retrospective record reviews than less serious injuries; it is possible that some serious, but non-fatal, injuries may not have been detected by the retrospective studies identified. In terms of the circumstances surrounding the reported deaths, the most common is the asphyxiation caused by vest restraint and the victims were typically elderly residents from nursing homes. However, deaths caused by vest restraints have also been reported in younger people and in the acute care setting. The circumstance of the deaths appear to involve the restrained person being able to partially exit the bed or chair and so become trapped by the restraining device. There is little information concerning minor injuries caused by restraint devices like nerve or ischaemic injury caused by wrist restraint, a device often used in ICUs.

According to the authors there have been only limited rigorous evaluation of restraint minimization programs, particularly in the acute care setting; while there have only been a small number of studies in the acute care setting, it appears that the reduction in restraint use in this setting is not as great as has been achieved in residential care facilities. The effectiveness of restraint minimization programs, and the impact on both minor and serious injury, is an area in need of further investigation.

A vast number of alternatives (for example: quiet single room, familiar staff, physical, occupational and recreational therapies, increased staffing level, additional supervision and observation, active listening, increased visiting, provide companionship using family, friends or volunteers) have been used during physical restraint minimization programs, and many others have been suggested based on expert opinion. However, no individual alternative has been demonstrated to be effective and most have not been subject to any evaluation. While a number of studies have shown that physical restraint can be reduced using a variety of interventions, it has not yet been determined which interventions are effective.

The aim of the present systematic review is to focus on adult ICUs patients and to present the best available evidence to support decision pertaining the controversial use of physical restraint to prevent patient-initiated device removal.

3. Inclusion criteria

3.1 Types of participants

The quantitative component of this review considered studies that include all adult (>18 years old) ICU patients:
- with all types of devices (for example -but not limited to- endotracheal tube, IABP, lung drainage, CVC, indwelling bladder catheter, arterial catheter, feeding tube, etc)
- with any kind of pathology, at any degree of severity and any kind of co-morbidity.

3.2 Types of intervention(s)/phenomena of interest

The quantitative component of the review considered studies that evaluate:

INTERVENTION

Physical restraints intended as any kind of device, material, or equipment that is attached (not only "adjacent": bed rails in ICU cannot be considered physical restraints) to a person's body and deliberately prevents the person's free bodily movement.

- All types of sedation at any dosage are accepted in light of the current sedation trends including daily wakening protocols\(^1\) and a patient's activity level scored as calm and cooperative
- Patient treated with neuromuscular blocking agent (NMBAs) are excluded from this systematic review;
neuromuscular blocking drugs block neuromuscular transmission at the neuromuscular junction, causing paralysis of the affected skeletal muscles. Their use in ICUs is usually limited to patients affected by severe acute respiratory distress syndrome (ARDS) because they require a deep sedation and could be implicated in lung atelectasis, ICU-acquired myopathies and prolonged duration of mechanical ventilation. Patients treated with NMBAs can’t make any movement -restrained or not- and they are not subjected to self-removal of therapeutic devices.

COMPARISON

Any other strategy (for example but not limited to- surveillance by family members/volunteers, direct nurse observation, environmental factor, effective communication)

3.3 Types of outcomes

This review considered studies that include the following primary outcome measures:

- Frequency of patient-initiated device removal in restrained/not restrained patients.

Where possible this review considered also secondary outcome measures:

- Complications related to patient-initiated device removal (for example but not limited to: bleeding/haemorrhage, respiratory failure/failure, delay in therapy, pneumothorax, urinary retention, aspiration, hypotension, ect)

- Complications related to the use of physical restraints in terms of direct injury (for example but not limited to: lacerations, bruising, development of pressure sores, ischaemia, nerve compression, etc)

3.4 Types of studies

The review took into account any randomised controlled trials and quasi-experimental studies. Because of the adverse nature of the review outcomes, both analytical and descriptive observational study designs were considered for this systematic review.

4. Search strategy

The search strategy aimed to find both published and unpublished studies. A three-step search strategy were utilised in each component of this review. An initial limited search of MEDLINE and CINAHL had been undertaken followed by analysis of the text words contained in the title and abstract, and of the index terms used to describe article. A second search using all identified keywords and index terms had been undertaken across all included databases. Thirdly, the reference list of all identified reports and articles had been searched for additional studies. No restrictions were placed on date of publications and each database was searched as far back as possible; there weren’t also any language limits. The searched databases include:

- PUBMED
- CINAHL
- EMBASE
- COCHRANE Library (just for trial)

The search for unpublished studies included:

- Grey literature report
The types of participants were "all adults" (>18 years old).

The initial key words were: physical restraints, chemical restraint, unplanned extubation, self-extubation, device removal, treatment interference, therapy disruption, agitation, intensive care unit, critical care. The search strategies for identification of the publications are presented in Appendix I.

5. Study selection

The title and abstracts identified from the search were stored in a database. Each citation was assessed against the inclusion/ exclusion criteria independently by two reviewers and the full text of studies deemed relevant were obtained; for studies with unclear titles and abstracts, the full text was also obtained. In four cases it wasn’t possible to retrieve the full text.

Additional search on references lists and bibliographies of retrieved full text was carried on. The 60 retrieved studies were assessed through PICOM strategy independently by two reviewers: the 11 selected studies reported in table 1 were submitted to JBI-MAStARI critical appraisal criteria.

Table 1 – Summary of the studies assessed for inclusion in this systematic review.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Year</th>
<th>Summary tables</th>
</tr>
</thead>
</table>
The flow diagram of the selection process and reasons for exclusion of the publications reason for the exclusion is showed in Figure 1.

Figure 1 – A flow diagram of the selection process and reasons for exclusion of the publications.

Mion LC et al in Patient-initiated device removal in intensive care units: a national prevalence study declare “adult ICUs” as study setting but in the chapter regarding the patients characteristics the age ranges from 11 to 98 years.

Kept in contact with the authors, no reply.

6. Assessment of methodological quality

The 11 studies selected were assessed by two independent reviewers for methodological validity prior to inclusion in the review using standardized critical appraisal instruments from the Joanna Briggs Institute Meta Analysis of Statistics Assessment and Review Instrument (JBI-MAStARI), see figure 2 and Appendix II. Any disagreements arisen between the reviewers were resolved through discussion in order to reach consensus.

Figure 3 shows the JBI-MAStARI critical appraisal criteria for Comparable Cohort / Case Control Studies: this tool was used to assess the studies reported in summary tables 2-7. Figure 4 shows JBI-MAStARI critical appraisal criteria for Descriptive / Case Series Studies: this tool was used to assess the studies reported in summary tables 8-12.
Studies in "use of physical restraints in adult ICU patients to prevent patient-initiated device removal: a systematic review."

This page is used to manage the retrieved Studies. From this page, Studies can be selected to perform assessment and extraction and to develop Findings. The drop-down box can be used to filter studies as raw, included, excluded, extracted or finished.

Figure 2 – Retrieved studies uploaded in JBI-MAStARI software.

Figure 3 – JBI-MAStARI critical appraisal criteria for Comparable Cohort / Case Control Studies.
Table 2

Study type: prospective cohort study (without comparable cohort)

<table>
<thead>
<tr>
<th>Criteria</th>
<th>1st Reviewer</th>
<th>Comments</th>
<th>2nd Reviewer</th>
<th>Comments</th>
<th>Final assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>YES</td>
<td>The authors declare that the sample is only representative of medical ICU patients (not surgical)</td>
<td>Unclear</td>
<td>The sample is big enough but doesn’t include surgical patients</td>
<td>YES</td>
</tr>
<tr>
<td>2</td>
<td>Not Applicable</td>
<td>There’s no comparable cohort</td>
<td>Not Applicable</td>
<td>Cohort study without concurrent cohort</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>3</td>
<td>Not Applicable</td>
<td></td>
<td></td>
<td></td>
<td>Not Applicable</td>
</tr>
<tr>
<td>4</td>
<td>YES</td>
<td></td>
<td>YES</td>
<td>Use of logistic regression analysis</td>
<td>YES</td>
</tr>
<tr>
<td>5</td>
<td>YES</td>
<td></td>
<td>YES</td>
<td></td>
<td>YES</td>
</tr>
<tr>
<td>6</td>
<td>YES</td>
<td></td>
<td>YES</td>
<td></td>
<td>YES</td>
</tr>
<tr>
<td>7</td>
<td>YES</td>
<td>patients lost to follow-up(died) were included in the analysis</td>
<td>YES</td>
<td></td>
<td>YES</td>
</tr>
<tr>
<td>8</td>
<td>YES</td>
<td></td>
<td>YES</td>
<td></td>
<td>YES</td>
</tr>
<tr>
<td>9</td>
<td>YES</td>
<td></td>
<td>YES</td>
<td></td>
<td>YES</td>
</tr>
</tbody>
</table>

Included: YES
Reason: scored YES > 4

Included: YES
Reason: scored YES = 6, Unclear = 1, Not Applicable = 2

Included: YES
Reason: scored YES > 4
Table 3

Study type: prospective cohort study (without comparable cohort)

<table>
<thead>
<tr>
<th>Criteria</th>
<th>1st Reviewer</th>
<th>Comments</th>
<th>2nd Reviewer</th>
<th>Comments</th>
<th>Final assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unclear</td>
<td>The authors collected data from general ICU intubated patients, the sample is big enough but only self-extubated group characteristics are showed in tables</td>
<td>Unclear</td>
<td>The study presents only the characteristics of self-extubated group</td>
<td>Unclear</td>
</tr>
<tr>
<td>2</td>
<td>Not Applicable</td>
<td>There’s no comparable cohort</td>
<td>Not Applicable</td>
<td>Cohort study without concurrent cohort</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>3</td>
<td>Not Applicable</td>
<td></td>
<td>Not Applicable</td>
<td></td>
<td>Not Applicable</td>
</tr>
<tr>
<td>4</td>
<td>Unclear</td>
<td>The authors presents the possible confounders only for self-extubated group</td>
<td>NO</td>
<td>Data about level of sedation, use of physical restraint and mental status are collected only for self-extubated group</td>
<td>NO</td>
</tr>
<tr>
<td>5</td>
<td>YES</td>
<td></td>
<td>YES</td>
<td></td>
<td>YES</td>
</tr>
<tr>
<td>6</td>
<td>YES</td>
<td></td>
<td>YES</td>
<td></td>
<td>YES</td>
</tr>
<tr>
<td>7</td>
<td>Unclear</td>
<td></td>
<td>Unclear</td>
<td>No information about data collectors</td>
<td>Unclear</td>
</tr>
<tr>
<td>8</td>
<td>Unclear</td>
<td></td>
<td>Unclear</td>
<td></td>
<td>Unclear</td>
</tr>
<tr>
<td>9</td>
<td>Unclear</td>
<td></td>
<td>Unclear</td>
<td></td>
<td>Unclear</td>
</tr>
</tbody>
</table>

Included: NO
Reason: scored YES < 4

Included: NO
Reason: scored YES = 2, NO = 1, Unclear = 6

Included: NO
Reason: scored YES < 4

<table>
<thead>
<tr>
<th>Criteria</th>
<th>1st Reviewer</th>
<th>Comments</th>
<th>2nd Reviewer</th>
<th>Comments</th>
<th>Final assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>YES</td>
<td>sample big enough, not clearly stated the diagnosis-type in the controls group</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>2</td>
<td>YES</td>
<td></td>
<td>YES</td>
<td></td>
<td>YES</td>
</tr>
<tr>
<td>3</td>
<td>YES</td>
<td></td>
<td>YES</td>
<td></td>
<td>YES</td>
</tr>
<tr>
<td>4</td>
<td>Unclear</td>
<td>Not measured the sedation level with a score. The authors only say "sedation yes or no" and it could be a confounder</td>
<td>YES</td>
<td></td>
<td>Unclear</td>
</tr>
<tr>
<td>5</td>
<td>YES</td>
<td></td>
<td>YES</td>
<td></td>
<td>YES</td>
</tr>
<tr>
<td>6</td>
<td>YES</td>
<td></td>
<td>YES</td>
<td></td>
<td>YES</td>
</tr>
<tr>
<td>7</td>
<td>Not Applicable</td>
<td></td>
<td>Not Applicable</td>
<td>Retrospective study based on medical chart and incident report</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>8</td>
<td>Unclear</td>
<td></td>
<td>Unclear</td>
<td></td>
<td>Unclear</td>
</tr>
<tr>
<td>9</td>
<td>YES</td>
<td></td>
<td>YES</td>
<td></td>
<td>YES</td>
</tr>
</tbody>
</table>

Included: YES
Reason: scored > 4 YES

Included: YES
Reason: scored YES = 7, Unclear=1, Not Applicable=1

Included: YES
Reason: scored = 6 YES, 0 NO
Table 5

Study type: retrospective case-control study

<table>
<thead>
<tr>
<th>Criteria</th>
<th>1st Reviewer</th>
<th>Comments</th>
<th>2nd Reviewer</th>
<th>Comments</th>
<th>Final assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>YES</td>
<td>YES</td>
<td></td>
<td></td>
<td>YES</td>
</tr>
<tr>
<td>2</td>
<td>YES</td>
<td>More surgical patients in the control group, but the authors considered it in the analysis</td>
<td>YES</td>
<td>No diagnosis-type of the sample, anyway the two groups are similar for severity of illness. The authors considered in the analysis that surgical and medical patients are not equally distributed in the case and the control group</td>
<td>YES</td>
</tr>
<tr>
<td>3</td>
<td>YES</td>
<td>YES</td>
<td></td>
<td></td>
<td>YES</td>
</tr>
<tr>
<td>4</td>
<td>NO</td>
<td>Not measured the sedation level with a score. The authors included patients receiving neuromuscular blocking agents</td>
<td>NO</td>
<td>The sedation level is a possible confounder. Patients treated with neuromuscular blocking agents are included. The authors should tell us how many restrained patients were treated with NMBA both in case and control group</td>
<td>NO</td>
</tr>
<tr>
<td>5</td>
<td>YES</td>
<td>YES</td>
<td></td>
<td></td>
<td>YES</td>
</tr>
<tr>
<td>6</td>
<td>YES</td>
<td>YES</td>
<td></td>
<td></td>
<td>YES</td>
</tr>
<tr>
<td>7</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Retrospective study based on medical chart and incident report</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>8</td>
<td>YES</td>
<td>YES</td>
<td></td>
<td></td>
<td>YES</td>
</tr>
<tr>
<td>9</td>
<td>YES</td>
<td>YES</td>
<td></td>
<td></td>
<td>YES</td>
</tr>
</tbody>
</table>

Included: NO
Reason: The authors included patients receiving neuromuscular blocking agents

Included: NO
Reason: Patients treated with neuromuscular blocking agents are included.

Included: NO
Reason: The authors included patients receiving neuromuscular blocking agents without declaring how many physically restrained patients were also treated with NMBA.

* Kept in contact with the authors in order to know how many restrained patients were also treated with NMBA in both case and control groups. The authors kindly replied to the reviewers that they don’t have the requested data. The present SR is about patient-initiated device removal in physically restrained but not “chemically paralyzed” patients.
Table 6

Krayem A, Butler R. Unplanned extubation in the ICU: impact on outcome and nursing workload.
Ann Thorac Med. 2006, 1(2):71-75

Study type: retrospective case-control study

<table>
<thead>
<tr>
<th>Criteria</th>
<th>1st Reviewer</th>
<th>Comments</th>
<th>2nd Reviewer</th>
<th>Comments</th>
<th>Final assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unclear</td>
<td>Little sample, only one control for each case</td>
<td>YES</td>
<td>General ICU (surgical + medical) patients</td>
<td>YES</td>
</tr>
<tr>
<td>2</td>
<td>YES</td>
<td>Non statistically significant difference about clinical characteristics between groups</td>
<td>YES</td>
<td>Similar APACHE III score and diagnosis across groups</td>
<td>YES</td>
</tr>
<tr>
<td>3</td>
<td>YES</td>
<td>Use of case-matching</td>
<td>YES</td>
<td>Use of case-matching</td>
<td>YES</td>
</tr>
<tr>
<td>4</td>
<td>Unclear</td>
<td>Not measured the sedation/agitation level with a score.</td>
<td>Unclear</td>
<td></td>
<td>Unclear</td>
</tr>
<tr>
<td>5</td>
<td>YES</td>
<td></td>
<td>YES</td>
<td></td>
<td>YES</td>
</tr>
<tr>
<td>6</td>
<td>YES</td>
<td></td>
<td>YES</td>
<td></td>
<td>YES</td>
</tr>
<tr>
<td>7</td>
<td>Not Applicable</td>
<td></td>
<td>Not Applicable</td>
<td>Retrospective study based on medical chart and incident report</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>8</td>
<td>Unclear</td>
<td>The authors don’t declare who was involved in the data-collecting and if they have been trained</td>
<td>NO</td>
<td>No information about data collectors</td>
<td>NO</td>
</tr>
<tr>
<td>9</td>
<td>Unclear</td>
<td></td>
<td>NO</td>
<td>The method section is not enough detailed</td>
<td>Unclear</td>
</tr>
</tbody>
</table>

Included: YES
Reason: scored > 4 YES

Included: YES
Reason: scored YES = 5, NO = 2, Unclear = 1

Included: YES
Reason: scored > 4 YES
<table>
<thead>
<tr>
<th>Criteria</th>
<th>1st Reviewer</th>
<th>Comments</th>
<th>2nd Reviewer</th>
<th>Comments</th>
<th>Final assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unclear</td>
<td>Medical ICU intubated patients. Only few clinical characteristics are showed in tables</td>
<td>Unclear</td>
<td>There is not a table with all the characteristics of the sample.</td>
<td>Unclear</td>
</tr>
<tr>
<td>2</td>
<td>Unclear</td>
<td>The authors declare they collected patients' data for cases and controls (age, sex, main reason for admission, etc.) but there isn't any table about it. Cases and controls were similar?</td>
<td>Unclear</td>
<td>The authors declare that control and case groups were similar, but in the article there is not a table with the comparison of control and case group.</td>
<td>Unclear</td>
</tr>
<tr>
<td>3</td>
<td>YES</td>
<td></td>
<td>Unclear</td>
<td>The authors randomized the patients in the control group</td>
<td>Unclear</td>
</tr>
<tr>
<td>4</td>
<td>YES</td>
<td></td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>5</td>
<td>YES</td>
<td></td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>6</td>
<td>YES</td>
<td></td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>7</td>
<td>YES</td>
<td>One patient died before being re-intubated. It's not clear if he was included in the analysis or not, but anyway it doesn't change the characteristics of the studied patients</td>
<td>Unclear</td>
<td>One patient died before being re-intubated after unplanned extubation, but it is unclear if the authors included this patient in the analysis</td>
<td>YES - One patient died before being re-intubated. It's not clear if he was included in the analysis or not, but anyway it doesn't change the characteristics of the studied patients</td>
</tr>
<tr>
<td>8</td>
<td>Unclear</td>
<td>The authors don't declare who was involved in the data-collecting and if they have been trained</td>
<td>NO</td>
<td>No information about data collectors</td>
<td>NO</td>
</tr>
<tr>
<td>9</td>
<td>YES</td>
<td></td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>

Included: YES
Reason: scored > 4 YES

Included: Unclear
Reason: scored YES = 4, NO = 1, Unclear = 4

Included: YES
Reason: scored > 4 YES
Figure 4 – JBI-MASTARI critical appraisal criteria for Descriptive / Case Series Studies.

JBI-MASTARI Critical Appraisal Criteria for Descriptive / Case Series Studies

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Yes</th>
<th>No</th>
<th>Unclear</th>
<th>Not Applicable</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Was study based on a random or pseudo-random sample?</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2) Were the criteria for inclusion in the sample clearly defined?</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3) Were confounding factors identified and strategies to deal with them stated?</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4) Were outcomes assessed using objective criteria?</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5) If comparisons are being made, was there sufficient descriptions of the groups?</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6) Was follow up carried out over a sufficient time period?</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7) Were the outcomes of people who withdrew described and included in the analysis?</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8) Were outcomes measured in a reliable way?</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>9) Was appropriate statistical analysis used?</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Table 8

Study type: prospective case-series study

<table>
<thead>
<tr>
<th>Criteria</th>
<th>1st Reviewer</th>
<th>Comments</th>
<th>2nd Reviewer</th>
<th>Comments</th>
<th>Final assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Unclear</td>
<td>Few data about type of and level of sedation.</td>
<td>NO</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Unclear</td>
<td>The authors declare who was involved in the data-collecting but not if they have been trained</td>
<td>Unclear</td>
<td>Probably there are more than one data collectors but is unclear if they were trained</td>
<td>Unclear</td>
</tr>
<tr>
<td>9</td>
<td>Unclear</td>
<td>Only few info about statistical analysis</td>
<td>Unclear</td>
<td>Unclear</td>
<td></td>
</tr>
</tbody>
</table>

Included: NO
Reason: scored < 4 YES

Included: NO
Reason: scored YES = 3, NO = 1, Unclear = 2

Included: NO
Reason: scored < 4 YES
Table 9

Study type: retrospective case-series study

<table>
<thead>
<tr>
<th>Criteria</th>
<th>1st Reviewer</th>
<th>Comments</th>
<th>2nd Reviewer</th>
<th>Comments</th>
<th>Final assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>2</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Unclear</td>
<td>The authors identified some possible confounding factors, but they didn't measure them with a score. The authors only say "sedation yes or no"</td>
<td>NO</td>
<td>Not measured the sedation level with a score</td>
<td>Unclear</td>
</tr>
<tr>
<td>4</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>YES</td>
<td>The authors compared reintubated and not reintubated patients after unplanned extubation</td>
<td>YES</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Retrospective study based on medical chart</td>
<td>Not Applicable</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Unclear</td>
<td>The authors don't declare who was involved in the data-collecting and if they have been trained</td>
<td>NO</td>
<td>No information about data collectors</td>
<td>NO</td>
</tr>
<tr>
<td>9</td>
<td>Unclear</td>
<td></td>
<td>YES</td>
<td>The authors provided a statistical analysis of the two subgroups (re-intubated/non reintubated)</td>
<td>YES</td>
</tr>
</tbody>
</table>

Included: YES
Reason: scored > 4 YES

Included: YES
Reason: scored YES = 5, NO = 2

Included: YES
Reason: scored > 4 YES
Table 10

Study type: retrospective case-series study

<table>
<thead>
<tr>
<th>Criteria</th>
<th>1st Reviewer</th>
<th>Comments</th>
<th>2nd Reviewer</th>
<th>Comments</th>
<th>Final assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Not Applicable</td>
<td>It’s a case series study. The sample consisted of all adult patients in the trauma surgical ICU who had experienced an unplanned extubation</td>
<td>Not Applicable</td>
<td></td>
<td>Not Applicable</td>
</tr>
<tr>
<td>2</td>
<td>YES</td>
<td>YES</td>
<td></td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>YES</td>
<td>YES</td>
<td></td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>YES</td>
<td>YES</td>
<td></td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td></td>
<td>Not Applicable</td>
</tr>
<tr>
<td>6</td>
<td>YES</td>
<td>YES</td>
<td></td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Retrospective study based on medical chart The authors declare lack of data about ramsay level in 5/31 patients. They don’t consider these patients in the analysis, but they cannot do it...have we to consider it not applicable ?</td>
<td></td>
<td>Not Applicable</td>
</tr>
<tr>
<td>8</td>
<td>Unclear</td>
<td>The authors don’t declare who was involved in the data-collecting and if they have been trained</td>
<td>NO</td>
<td>No info about data collectors</td>
<td>NO</td>
</tr>
<tr>
<td>9</td>
<td>YES</td>
<td>YES</td>
<td></td>
<td>YES</td>
<td></td>
</tr>
</tbody>
</table>

Included: YES
Reason: scored > 4 YES

Included: YES
Reason: scored YES = 5, NO = 1

Included: YES
Reason: scored > 4 YES
Table 11

Study type: prospective descriptive study

<table>
<thead>
<tr>
<th>Criteria</th>
<th>1st Reviewer</th>
<th>Comments</th>
<th>2nd Reviewer</th>
<th>Comments</th>
<th>Final assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>YES</td>
<td>Unclear</td>
<td>Not clear whether responders have potential to differ in some way to non-responders</td>
<td>Unclear</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Unclear</td>
<td>NO</td>
<td>Not measured the sedation level with a score, not clear the way they assess the state of mind</td>
<td>Unclear</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Unclear</td>
<td>Objectivity compromised?</td>
<td>Unclear</td>
<td>Even if the outcome “unplanned extubation” is an objective one, data were not collected from medical chart but through a questionnaire filled in by nurses</td>
<td>Unclear</td>
</tr>
<tr>
<td>5</td>
<td>NO</td>
<td>Unclear</td>
<td>NO</td>
<td>The comparison is not clear at all</td>
<td>NO</td>
</tr>
<tr>
<td>6</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Unclear</td>
<td>Unclear</td>
<td>The authors don’t declare any loss at follow up even if the numerical data are confused</td>
<td>Unclear</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Unclear</td>
<td>The authors declare who was involved in the data-collecting but not if they have been trained</td>
<td>Unclear</td>
<td>All ICU nurses were in charge to collect data double-checked by head nurses, but were they trained?</td>
<td>Unclear</td>
</tr>
<tr>
<td>9</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>Included: NO</td>
<td>Included: NO</td>
</tr>
</tbody>
</table>

| Included: NO | Reason: scored < 4 YES | Included: NO | Reason: scored YES = 2, NO = 2, Unclear = 4 | Included: NO | Reason: scored < 4 YES |
Table 12

Study type: retrospective descriptive study

<table>
<thead>
<tr>
<th>Criteria</th>
<th>1st Reviewer</th>
<th>Comments</th>
<th>2nd Reviewer</th>
<th>Comments</th>
<th>Final assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Not Applicable</td>
<td>Retrospective longitudinal study in a 18-bed ICU</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>2</td>
<td>YES</td>
<td>YES</td>
<td></td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>3</td>
<td>Unclear</td>
<td>The authors identified some possible confounding factors, but they didn’t measure them with a score</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Unclear</td>
</tr>
<tr>
<td>4</td>
<td>YES</td>
<td>YES</td>
<td></td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>5</td>
<td>Unclear</td>
<td>Unclear</td>
<td>The authors compared only few characteristics across 4 patients groups</td>
<td>Unclear</td>
<td>Unclear</td>
</tr>
<tr>
<td>6</td>
<td>YES</td>
<td>YES</td>
<td></td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>7</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>8</td>
<td>Unclear</td>
<td>The authors declare who was involved in the data-collecting but not if they have been trained</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Unclear</td>
</tr>
<tr>
<td>9</td>
<td>NO</td>
<td>Unclear</td>
<td>Few info about statistical analysis</td>
<td>NO</td>
<td>Included: NO</td>
</tr>
</tbody>
</table>

Included: NO
Reason: scored < 4 YES

Included: NO
Reason: scored = 3 YES, 1 NO, 3 Unclear

Included: NO
Reason: scored < 4 YES
7. Results

7.1 Studies included in the review

7.2 Description of studies

Of the 11 studies submitted to JBI-MAStARI critical appraisal criteria a total of 6 publications were included in the present review: one prospective cohort study, two retrospective case-control, one prospective case-control and two retrospective case-series. Two of them were carried on in Nineties and the remaining from 2006 and 2008.

Two studies were conducted in the USA, two in Europe (France-Spain), one in Canada and one in Asia. The settings of the included studies were three medical ICUs, one surgical ICUs and two general ICUs.

The samples studied were not big: they ranged from 23 patients in the smallest case-series to 300 in the biggest case-control study. This is due to the type of the included studies that are all observational.

Although the area of interest of the present SR was "patient-initiated device removal" in adult restricted ICU patients with all types of devices (for example - but not limited to - endotracheal tube, IABP, lung drainage, CVC, indwelling bladder catheter, arterial catheter, feeding tube, etc) the included publications regarded only the unplanned removal of endotracheal tube. The only three studies about other type of devices were excluded either because lack of data \(^{11,73}\) or because paediatric patients were involved.\(^3\)

Considering that all the included studies were about unplanned extubation, the type of restraints utilized were almost always soft wrist/hand restraints; in fact it is the most common device to prevent ICU intubated patients from self-extubation. Only in two studies \(^{28,36}\) it was not clearly stated and another one \(^{29}\) reported that in three instances patients had more than one type of restraint in place at the time of the self-extubation.
8. Data collection

Quantitative data will be extracted from papers included in the review using the standardised data extraction tool from JBI-MAStARI (Appendix III). The data extracted will include specific details about the interventions, populations, study methods and outcomes of significance to the review question and specific objectives.

9. Data synthesis

Quantitative papers will, where possible, be pooled in statistical meta-analysis using the Joanna Briggs Institute Meta Analysis of Statistics Assessment and Review Instrument (JBI-MAStARI). Where statistical pooling is not possible the findings will be presented in narrative form.

10. Final considerations before data extraction and synthesis

Only six studies met the criteria to be included in the present systematic review. They were all observational studies: cohort, case-control and case-series studies. This is due to the type of review question and its ethical impact: it is almost impossible to find RCTs about the effectiveness of physical restraints to prevent patient-initiated device removal. As it is well known the strength of inference from a cohort or a case-control study will always be less than that of a rigorously conducted RCT because randomization is the best way to ensure that groups are balance at baseline with respect to determinants of outcome. The reviewers will take it into account in the data extraction and synthesis.

About the outcomes of the present systematic review only the primary one had been investigated in the six included studies: they all collected the frequency of patient-initiated device removal in restrained/not restrained patients, but only few of them considered also the complications related to patient-initiated device removal and none of them the complications related to the use of physical restraints in terms of direct injury.

Last consideration about all the studies included (apart from one28) is that their first objective wasn’t to investigate the effectiveness of physical restraints to prevent patient-initiated device removal but mostly to understand the reasons for unplanned extubation. The data about physical restraints had been collected as part of patients characteristics in unplanned extubation events. In addition four out of six studies were retrospective and the data had been collected using medical chart: in such designed studies could it be that the data about physical restraints were underestimated? This is a question that reviewers will take into account together with the lack of strength of observational study design.

11. Conflicts of interest

None
References

Appendix I: Search strategy

Search Strategy For MEDLINE (till May 2011)

#1. “Restraint, Physical”[Mesh] OR “physical restraint”[TW]
#3. “treatment interference”[TW] OR “therapy disruption”[TW] OR “device disruption”[TW]
#6. “restraining therapy”[TW] OR “restraining therapies”[TW]
#7. “chemical restraint”[TW]
#8. (#1) AND #5
#9. (#1) AND #2
#10. (#1) AND #3
#11. (#1) AND #4
#12. (#4) AND #5
#13. (#8) AND #2
#14. (#8) AND #3
#15. (#8) AND #4#
#16. (#8) AND #7

Search Strategy For CINAHL (till May 2011)

S1. (MH “Restraint, Physical”)
S2. physical restraint
S3. (MH “Restraint, Chemical”)
S4. chemical restraint OR restraining therapies
S5. S1 OR S2 OR S3 OR S4
S6. (MH “Device Removal”)
S7. device removal
S8. unplanned extubation OR self extubation OR accidental extubation OR treatment interference OR therapy disruption OR device disruption
S9. S6 OR S7 OR S8
S10. S5 AND S9
S11. (MH “Critical Care”)
S12. (MH “Intensive Care Units”)
S13. critical care OR intensive care units
S14. S11 OR S12 OR S13
S15. S10 AND S14

Search Strategy For EMBASE (till May 2011)
#1. “physical restraint” OR “chemical restraint” OR “restraining therapies”
#2. “device removal”/exp
#3. “unplanned extubation” OR “self extubation” OR “accidental extubation” OR “treatment interference” OR “therapy disruption” OR “device disruption”
#4. #2 OR #3
#5. #1 AND #4

Search Strategy For COCHRANE (till May 2011)
#1. MeSH descriptor Device Removal explode all trees
#2. MeSH descriptor Intensive Care Units explode all trees
#3. device removal
#4. MeSH descriptor Restraint, Physical explode all trees
#5 accidental extubation OR unplanned extubation
#6. treatment interference
#7. physical restraint
#8. intensive care unit
#9. (#1 OR #3)
#10. (#2 OR #8)
#11. (#4 OR #7)
#12. (#9 AND #10 AND #11)
#13. (#10 AND #11 AND #5)
#14. (#10 AND #11 AND #6)
Appendix II: MASTARI Appraisal Instrument

JBI Critical Appraisal Checklist for Comparable Cohort/ Case Control

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
<th>Unclear</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Is sample representative of patients in the population as a whole?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Are the patients at a similar point in the course of their condition/illness?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Has bias been minimised in relation to selection of cases and of controls?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Are confounding factors identified and strategies to deal with them stated?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Are outcomes assessed using objective criteria?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Was follow up carried out over a sufficient time period?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Were the outcomes of people who withdrew described and included in the analysis?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Were outcomes measured in a reliable way?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Was appropriate statistical analysis used?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Overall appraisal:
Include □ Exclude □ Seek further info. □

Comments (Including reason for exclusion)

__

__
JBI Critical Appraisal Checklist for Descriptive / Case Series

Reviewer __________________________ Date __________________________

Author ________________ Year ______ Record Number ______

1. Was study based on a random or pseudo-random sample? □ Yes □ No □ Unclear □ Not Applicable
2. Were the criteria for inclusion in the sample clearly defined? □ Yes □ No □ Unclear □ Not Applicable
3. Were confounding factors identified and strategies to deal with them stated? □ Yes □ No □ Unclear □ Not Applicable
4. Were outcomes assessed using objective criteria? □ Yes □ No □ Unclear □ Not Applicable
5. If comparisons are being made, was there sufficient descriptions of the groups? □ Yes □ No □ Unclear □ Not Applicable
6. Was follow up carried out over a sufficient time period? □ Yes □ No □ Unclear □ Not Applicable
7. Were the outcomes of people who withdrew described and included in the analysis? □ Yes □ No □ Unclear □ Not Applicable
8. Were outcomes measured in a reliable way? □ Yes □ No □ Unclear □ Not Applicable
9. Was appropriate statistical analysis used? □ Yes □ No □ Unclear □ Not Applicable

Overall appraisal: Include □ Exclude □ Seek further info □

Comments (Including reason for exclusion)
__
__
Appendix III: MASTARI Data Extraction Instrument

JBI Data Extraction Form for Experimental / Observational Studies

Reviewer ___________________________ Date ___________________________

Author ___________________________ Year ___________________________

Journal ___________________________ Record Number ___________________________

Study Method

- RCT □
- Quasi-RCT □
- Longitudinal □
- Retrospective □
- Observational □
- Other □

Participants

Setting

Population

Sample size

Group A _______________ Group B _______________

Interventions

Intervention A

Intervention B

Authors Conclusions:

Reviewers Conclusions:

Study results

Dichotomous data

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Intervention (1) number / total number</th>
<th>Intervention (2) number / total number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continuous data

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Intervention (1) number / total number</th>
<th>Intervention (2) number / total number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>